Seminarios / Coloquios

  • Grupos de Artin Virtuales

    Coloquio Oaxaqueño. Daniel Juan Pineda, CCM-UNAM. Jueves 22 de mayo de 2025, 16:00 hrs,
  • 4a Escuela de Teoría Geométrica de Grupos

    El r egistro para la 4a Escuela de Teoría Geométrica de Grupos está abierto hasta el 6 de junio . El evento tendrá lugar en el Centro de Ciencias Matemáticas de la UNAM en Morelia, Michoacán del 4...

Calendario de eventos

Mes anteior Día anterior Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
String diagrams for C*-algebras and Bayesian inversion
Miércoles 03 Marzo 2021, 01:00pm
Accesos : 496
Contacto Carlos Segovia

Seminario de Categorías

Expositor: Arthur Parzygnat (IHÉS).

Resumen: The foundations of probability, statistics, and information theory are slowly undergoing a potentially dramatic change of perspective through the language of category theory via string diagrams [3]. This point of view has been abstracted to finite-dimensional C*-algebras via a stochastic variant of the Gelfand—Naimark theorem and quantum Markov categories. Through this abstraction, one can immediately analyze concepts such as Bayesian inversion in non-classical settings, which in fact has recently been done in finite dimensions [2]. What can be said for more general (possibly infinite dimensional) C*-algebras? In this talk, I will review some background on Markov categories, provide some motivation for their study, introduce our main quantum example, and then I'll provide a small refresher on C*-tensor products. Then, I'll explain why all C*-algebras do not form a quantum Markov category, and I will provide some suggestions for an alternative framework [1].

Main reference:

[1] arxiv.org/abs/2001.08375 (especially Remark 3.12 and Question 3.25).

Additional references of potential interest:

[2] arxiv.org/abs/2005.03886 (on Bayesian inversion in quantum mechanics)

[3] arxiv.org/abs/1908.07021 (on classical Markov categories) 

Inscripción en Página:
Youtube

https://www.youtube.com/watch?v=iZ8i3PbmcOM&feature=youtu.be